Memory as an I/O bottleneck - facts and consequences for high-performance data management

Tim Kaldewey1,2, Andrea Di Blas1,2, Scott Brandt2, Eric Sedlar1

1 Oracle Server Technologies – Special Projects
{tim.kaldewey, andrea.di.blas, eric.sedlar}@oracle.com

2 University of California Santa Cruz - School of Engineering
{kalt, andrea, scott}@soe.ucsc.edu
Memory as an I/O bottleneck
High Performance Data Management

0.000047 mph

40-50 mph

10 ms

100 ns

0.3 ns (3 GHz)

10^6
High Performance Data Management
Agenda

• Introduction
 – Scope of high performance data management

• Dissecting Memory performance
 – 4 key factors of memory performance

• Memory analysis & model – application(s)
 – FAST: Fast Architecture Sensitive Tree search
 – P-ary Search: Scalable parallel search algorithm
 – Optimizing database row formats
 – Fast string comparison
 – Fast memory management

• Conclusions
High Performance Data Management - Workloads

• Data-intensive
• Processor performance is not a problem
• Sifting through large quantities of data fast enough is
In-Memory Storage

• One application
 – Handling millions of (similar) jobs simultaneously, e.g. search engine

• Predictable performance?
 – Average response time
 – For Individual query?
 – How come this works so well?

Ping ~40 ms
Disk accesses ~15 ms
Memory access ~100 ns
High Performance Data Management –
“It's the memory stupid!”

- Performance ~100 ns
- Predictability – multi-level caches
- Rapidly growing sizes

1 R. Sites. It's the memory, stupid! MicroprocessorReport, 10(10), 1996
2 A. Ailamaki et al. DBMSs on a modern processor: Where does time go? VLDB’99
Memory Performance – Characterization

- Memory performance depends on:
 - Access pattern, method & word size

![Graph showing memory bandwidth for different access patterns and word sizes: random write, random read, sequential write, sequential read. The graph compares 8bit, 32bit, 64bit, and 128bit data.]
Memory Bandwidth ≠ function of #Bytes accessed

- Even if we normalize accesses to 128bit (16x8-bit, 4x32bit, 2x64bit)
- Small data types clog the memory controller!
Memory Bandwidth – Multithreading

- Peak performance requires parallel memory access
- Hardware threads further accelerate random workloads

Results for a quad-core i7 2.66GHz, DDR3 1666. 32GB data accessed as 64-bit words.
Peak Memory Performance

- Required level of concurrency depends on the target architecture

Results for an 8-core UltraSPARC T1 1.2 GHz, DDR2 533. 32GB data accessed as 64-bit words.
RAM = Random Access memory?

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Performance impact</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access pattern</td>
<td>18x sequential vs. random</td>
<td>MTU = Cache Line (64B)</td>
</tr>
<tr>
<td></td>
<td>2x read vs. write</td>
<td></td>
</tr>
<tr>
<td>Word Size</td>
<td>16x 128-bit vs. 8-bit words</td>
<td>Memory Controller</td>
</tr>
<tr>
<td>Parallelism</td>
<td>32x multithreaded vs. serial</td>
<td></td>
</tr>
</tbody>
</table>

- How can we exploit that knowledge?
 - To predict application performance *a paper in the works*
 - Accelerate data intensive apps e.g. search
Why Search?

Honestly, how many times a day do you visit

Google™

Yahoo!®
FAST: Fast Architecture Sensitive Tree Search

• Starting from a binary tree produce a memory/access optimal layout

• Parent and children stored linearly: use SSE vectors for load & compare

• Can place 4 tree levels in one cache line
• Require only 2 memory requests to access for 4 tree levels

FAST: Fast Architecture Sensitive Tree Search

- At a larger scale consider page size to minimize TLB misses

- Can outperform a conventional implementation by 2.5x

- The downside:
 - Accesses get very complicated (15 nodes per cache line)
 - Updates are even worse (rebalancing)
Databases usually use inverted lists or B-trees

• Accelerate search on existing data structures?
• Binary search has random access pattern and is inherently serial

\[\text{Complexity } \log_2(n) \text{ iterations} = \# \text{ random memory accesses} \]

 – If we could parallelize the memory accesses,
Parallel Search

• Divide and conquer using multiple threads/processors (4)
 – Still random but parallel memory access
 – Pivot elements can be shared and lower bound set to -\(\infty\)

\[
\begin{array}{cccccccccccccccccc}
4 & 5 & 6 & 7 & 8 & 9 & a & b & c & d & e & f & g & h & i & j & k & l & m & n & o & p & q & r & s & t & u & v & w & x & y & z \\
\end{array}
\]

\[
\begin{array}{cccc}
P_0: g & P_1: g & P_2: g & P_3: g \\
\end{array}
\]

\[
\begin{array}{cccc}
c & d & e & f & g & h & i & j & k \\
\end{array}
\]

\[
\begin{array}{cccc}
P_0 & P_1 & P_2 & P_3: g \\
\end{array}
\]

• We called this approach P-ary search\(^5\) – P for the # of processors
• Complexity \(\log_p(n)\) = # concurrent random memory accesses
• B-trees do nothing else but co-locate pivot elements
 – memory accesses are now sequential =)

\(^5\) T. Kaldewey, A. Di Blas, Jeff Hagen, Eric Sedlar Parallel Search on Video Cards. USENIX HOTPAR’09
P-ary Search – Response time

- CPU Implementation using x86 SSE vectors
- Binary vs. P-ary search

Random access memory bandwidth, Core i7 quad 2.66GHz, DDR3 1666.

- Strong correlation of memory and application performance
 - Exploiting parallel memory access to improve response time

Searching a 512MB data set with 134mill. 4-byte integer entries
A Glimpse into the parallel future

- 32-ary Search on a GPU
 - Response time is workload independent

Searching a 512MB data set with 134mill. 4-byte integer entries,
Results for a nVidia GT200b (240 cores), 1.5GHz, GDDR3 1.2GHz.
Database Row Format(s)

• Consider a table with 500 columns stored by rows
 – We would like to get the value(s) in column #250 (= an average access)
• Consider the following data structures:
 – Option 1: 1 Byte storing column width/length followed by data, default in many (old) databases

 3 a b c 2 e f 4 h i j k 9 m ...

 – Option 2: Grouping column width' and data

 0 3 2 4 9 ... a b c e f h i j k m ...

 – Option 3: An array of 2 Byte column offsets followed by data

 0 3 5 9 18 ... a b c e f h i j k m ...
Database Row Format(s)

- 500 column table – rowstore, tablescan – accessing column 250
String Comparison

• Search naturally requires MANY comparisons
• The strcmp() library function:

```c
int strcmp(const char* s1, const char* s2){
    while (*s1 == *s2++)
        if (*s1++ == 0)return 0;
    return (*s1 - *(s2 - 1));
}
```

- Byte-wise memory access is slow
String Comparison

• **Strcmp as an example for efficient Vector computing**

```
int SSEstrcmp (const void* s1, const void* s2) {
    int r=0;
    int gt=0;
    __asm__ volatile(
        // load strings s1,s2 into 128bit xmm regs
        " movdqa (%[s1]), %%xmm0\n\t"
        " movdqa (%[s2]), %%xmm1\n\t"
        // save the second for later
        " movdqa %%xmm1, %%xmm2\n\t"
    )
    return r;
}
```
Vectorized strcmp()

:// s1==s2 ?
" pcmpeqb %xmm0, %xmm1\n\t"
// bitmask reduction to 16 bit
" pmovmskb %xmm0, %[r]\n\t"
// We now have one bit set for each matching byte in s1,s2
// Now bit mask a match to 0(=found)
" xor $0xFFFF, %[r]\n\t"
// if all 0 then s1=s2 and we are DONE
" je end\n\t"
//s1>s2
" pcmppgtb %xmm2, %xmm0\n\t"
// reduce result to 16 bit
" pmovmskb %xmm0, %[gt]\n\t"
// shift left, because there is a 0th byte
" shl $1, %[gt]\n\t"
" shl $1, %[r]\n\t"
// scan for the first > bit set
" bsf %[gt], %[gt]\n\t"
// scan for the first = bit set
" bsf %[r], %[r]\n\t"
// if they are the same s1>s2 [r>0 already]
" cmp %[r] ,%[gt]\n\t"
" je end\n\t"
// s1<s2, hence return -1
" mov $-1, %[r]\n\t"
"end:\n\t"
String Comparison

- Strcmp as an example for efficient Vector computing

$a\ b\ c\ d\ e\ f\ g\ h\ i\ j\ k\ l\ m\ n\ o\ /0$

$2x\ 128\text{bit loads (vs. }30\times\text{8bit})$

$a\ b\ c\ d\ e\ f\ g\ h\ i\ j\ k\ l\ m\ n\ p\ /0$

- Larger word-size reduce # memory requests
- Measured speedup of up to 2x
- Latest CPU generation (Core i7) has a builtin strcmp instruction `pcmpstri`
 - Marginal performance gain as #memory access does not change
Fast memory management

- Our research suggests that larger word sizes yield better performance
 - Rewrite `memcpy`, `memcmp`, `memset`, ... ?
 - ... or wait for a new compiler

```c
typedef struct filepath{
    unsigned char  file_1[64];
    Unsigned char path_1[512];
}filepath_t;

int foo(){
    char str1[]="Sample string";
    char str2[40];
    filepath_t sth;
    memset((void*)&(sth),0,
           sizeof(sth));
    memcpy(str2,str1,40);

    foo:
    ...
    movaps  %xmm0, -16(%esp,%eax)
    movaps  %xmm0, -32(%esp,%eax)
    movaps  %xmm0, -48(%esp,%eax)
    movaps  %xmm0, -64(%esp,%eax)
    subl    $64, %eax
    jne     ..B1.7
...
    movaps  576(%esp), %xmm0
    movaps  %xmm0, (%esp)
    movaps  592(%esp), %xmm1
    movaps  %xmm1, 16(%esp)
    movsd   608(%esp), %xmm2
    movsd   %xmm2, 32(%esp)
```

- Parallel memory accesses yield even better performance
 - Parallelize `memxxxx`?
Conclusions & Ongoing Work

• We have shown the keys determinants of memory performance:
 – Access pattern: sequential vs. random
 – Access method: read vs. write
 – Word size
 – Concurrency

• This research inspired
 – Fast Architecture Sensitive Tree Search ⁴
 – P-ary (K-ary) search, scalable parallel search algorithm(s) ⁵,⁶
 – Parallel hash and sort-merge join to reduce query response time ⁷
 – Optimizing database row formats
 – Several product optimizations: fast memcpy, SSE strcmp, ...

• Ongoing work
 – Further exploring the concept of parallel memory access to reduce query response time on parallel architectures ⁸
 – Technology Transfer(s)

⁵ T. Kaldewey, A. Di Blas, Jeff Hagen, Eric Sedlar Parallel Search on Video Cards. USENIX HOTPAR'09
⁸ T. Kaldewey, A. Di Blas. Large Scale GPU Search. GPU (Computing) Gems, Volume 2. to appear
Questions ?
Disclaimer

The author's views expressed in this presentation do not necessarily reflect the views of Oracle.
ORACLE IS THE INFORMATION COMPANY