In-Vivo Storage System
Development

Noah Watkins™, Carlos Maltzahn, Scott Brandt
UC Santa Cruz, *Inktank, Inc.

lan Pye
Cloudfiare, Inc.

Adam Manzanares
CSU Chico



In the beginning...

e Storage systems are big dumb boxes with
fixed interfaces

* Applications build all their smarts on top, no
matter how inconvenient that might be

* Add Diagram

— Basic illustration of the above concept



And throughout time...

Alternative 1/O interface proposed
— Co-design

Add example diagram

— Structured interface to storage

This is a powerful, well-researched concept
— Active storage and custom interfaces enable
— Reduce data transfer, exploit parallelism, simplify

But moving a giant storage system (and
established users) is hard!



And we settled on middleware...

* New thing? Build some middleware
* |nstead of co-design

* |Interesting stat is the number of libraries and
middleware listed on wikipedia. Lots!



The custom interface comeback

Hadoop has been popularizing this
— Customizable platform, structured storage

DOE FastForward Project
— Analysis shipping in Lustre

Heavily used in Ceph products
— Atomicity guarantees, structured storage

Open-source systems avoid vendor lock-in

All the pieces seem to be in place. What gives?
— How do we actually build this stuff?



Observation 1: Data and Interface are
One

* The interfaces and data are tied together

* From this it follows that the storage system
should play a key role in managing the
interfaces



Example of Co-Design

Click streams, logs, sensor, sci. simulation
Read-mostly data
Example diagram

— Time ordered data partitioned into objects
Customized interfaces are built on each object

Both storage system and application must
evolve together

If we change one we need to change the other



Observation 2: Software life-cycle is
difficult

Application source is decoupled from

interfaces

Example: production plus 2 developers

Eventually merge interfaces into production

Isolation expected by developers isn’t there



Observation 3: Deployment is difficult

* Applications are decoupled from the
interfaces they depend on

* Consistency is hard to ensure in a dynamic
system



Ok, so what? Get a test cluster

Avoid production performance surprises

Conflicts aren’t fatal, just use developer
guidelines to avoid conflicts

Stage all the new changes ready to go

Costs SSS

Migration to production is shot in the dark
— Peculiarities of live data



In-Vivo Storage Development

Single system
Live evolution

System manages interfaces and ensures
isolation

Facilitates software life-cycle



Architecture

* Dynamic, extensible interfaces

* Interface developer environment
— Workspace
— Isolation

* An IDE service

— Handles interface consistency
— Etc...



Extensible Storage Interfaces

* Our focus is on object-based storage

* |nterface defined by new system function

— Capabilities depend on the system
* Object model, atomicity

* New functionality is added with new code
— Pragmatically, static interfaces won’t help
— Compiled extensions are difficult to manage

— Static interfaces undermine iterative development



Dynamic Storage Interfaces

* Script-based solution dynamic / fast enough
— Just shuffling data around

* Our prototype in RADOS uses Lua language
— 90% the speed of C

* New interfaces are small code fragments

Interface-Average
function avg(attr)

Client |&——
key = "avg'" + attP Q
val = cache.get(key)

exec(avg)
if not val then *

val = ComputeAverage(attr)

cache.put(key, val) OSD

done register
return val Obj
end

B

LuaVM




Interface Development Environment

 Workspace is the unit of developer isolation
— Like a working copy in Git/Subversion
— Exists in, and is managed by, the storage system
* Diagram

— Storage cluster with workspace existing
orthogonally to native partitioning entities like a
pool.



Workspace Isolation

* Logical Isolation

— Between workspaces and production views
— Must be transparent and efficient

* Interfaces may cache data, use indexes, etc

— Transparent namespacing provides isolation

Interface-Average

function avg(attr) lien <
key = "avg." + attr Client
val = cache.get(key) exec(avg)
if not val then *
val = ComputeAverage(attr)
cache.put(key, val) — eqister OSD
done 9 — =
return val Obj §
end 3




Workspace Isolation

e Efficiency
— Reads satisfied from base data
— CoW for data transformations

* Physical Isolation
— Cluster partitioning
— Data placement
— Tiering

— Integrate with underlying mechanisms (e.g.Pool)



Workspace Isolation

* Performance Isolation
— Production performance should be insulated
— Inter-workspace performance policies

* Use existing solutions
— Disk (Fahrrad)
— CPU (RBED)



Workspace Management

Dropped or merged with production

Name collisions are identified
— Resolution is not automatic, but managed

Isolation parameters can also be migrated
Expensive transformations take care

— May want to migrate all interface to format
— Handled automatically using migration routine

Workspace removal results in clean-up



The IDE Service

* Interfaces change in a changing cluster
— Propogation etc...

* Application should expect consistent views
* Existing services handle data with similar

requirements

— Paxos service managing cluster state
— Distributes and ensures interface consistency



The IDE Service

* Integration

* Need to resolve interfaces in the storage
system with applications



Conclusion



