Ceph: the long (long) road from research to production

Sage Weil
new dream network / DreamHost
Outline

- Background
- Research beginnings
- Evolution
- Adoption
- Business
- Future
Background
Ceph architecture
What makes it different

- Robust distributed object store
 - Functional object placement
 - Direct client access to data
- Scalable and adaptive metadata cluster
 - POSIX
 - Directory snapshots
 - Recursive accounting
- Open source
Multiple interfaces

- RADOS distributed object store
 - Librados
 - RESTful radosgw proxy (S3 compatible)
- RBD distributed block device
 - Scalable, reliable alternative to iSCSI/AoE/FCoE
- Ceph scalable distributed file system
 - Exabytes; POSIX; HPC
Research beginnings
UCSC

- Petascale object-based storage systems
 - LLNL/LANL/Sandia
 - Thousands of nodes, billions of files
 - Concurrent access to same file, directory
- Dynamic subtree partitioning
 - Balance load across cluster based on popularity of subtrees in hierarchy
Prototype

- First MDS cluster implementation (2004)
 - Simple message passing
 - Trivial object storage targets
- Initial distributed object store (2005)
- Flexible object placement (2005)
- Paxos monitor cluster (2006)
- Ebofs object file system (2004/2006)
Release!

- Paper published (2006)
- Moved project to SourceForge
 - Name (after the class cephalopod)
 - Logo
 - LGPL license

- Wait for the users and contributors to come running...
The next step

• No open source enterprise storage options
 – Most Linux file systems don't scale
 – Lack enterprise features (e.g., snapshots)
 – No community

• Enterprise players want you, not your project

• Continued development
 – Supported by new dream network / DreamHost
Successful open source

• Most projects are islands
 – Individual developers, few users
 – Few high profile projects

• Key factors
 – Merit
 – Users
 – License
 – Community
Users live in the real world

- Users are conservative, especially with storage
 - Nobody wants to lose data
 - Performance matters
 - Robust error handling
 - fsck
- Fuse isn't good enough
 - NFS/pNFS or native Ceph client
- No users!
Licensing

- GPL vs BSD
 - LGPL as compromise
- Dual licensing
- Copyright assignment
- Few flavors
 - Eucalyptus
 - MySQL
 - Lustre
Community

- Users
 - Testing, early adoption
 - Customers
- Developers
 - Contribute
 - Limit dependency on individuals, organizations
- Open development and transparency
 - E-mail list, IRC, public bug tracker
Ambitious feature set

- Native kernel client (2007-)
- Architecture continuing to evolve
 - Per-directory based snapshots (2008)
 - Recursive accounting (2008)
 - Object classes (2009)
 - REST gateway (2009)
 - Strong authentication (2009)
 - RBD (2010)
Local object storage

- **OBFS**
 - Designed specifically for object workloads

- **EBOFS**
 - Extents, Btrees
 - Custom interface (transactions)

- **Btrfs**
 - Robust, well supported and optimized
 - Kernel-level cache management
Core code

- Message passing reimplemented 4 times
 - MPI, TCP (*3)
 - Fixed cluster → dynamic
 - Node naming → address based
 - Stateful → stateless

- Data serialization
- Configuration
- Security
Linux kernel client

- Initial version in 2008
 - Substantial revision of client/MDS protocol
- Upstream review
 - Difficult to solicit reviews
 - Linux community can be demanding, fickle
- Linus initially declined
 - Perceived user demand
- Finally merged in 2.6.34
Adoption
Adoption is key

- Users → Testing
- Testing → Stability
- Stability → Users
- Stability → Support
- Support → Paying users
Upstream

- Kernel, Fedora 12, Ubuntu 10.10
 - Easier to test
 - Exposure
- More contributors
 - Many fixes on kernel side
- Backward compatibility
 - Most users run old kernels
Stabilization

• Phases
 – Distributed object storage
 – Single MDS
 – Snapshots
 – Clustered MDS

• Simpler use cases
 – Object storage
librados, radosgw

- Most large users don't need POSIX or files
 - S3 object storage immensely popular
- radosgw is a simple S3-compatible proxy
 - fastcgi
 - Talks directly to distributed object store
 - Coexist with librados
- Cloud infrastructure
Rados block device (RBD)

- Network block device striped over objects
 - Scalable, reliable, thinly provisioned
 - iSCSI, DRDB, nbd
 - Snapshots
- Native Linux kernel block device
- Qemu/KVM storage driver
 - librados
 - Huge level of community interest
Leverage existing communities

- Hadoop
 - Diverse, active community
 - Lots of temporary, intermediate data
 - Two glue layers (uclient, kclient)
 - Some talk, little action

- Hypertable
 - Distributed database
 - Small community, little adoption
Step 3: Profit
Infrastructure

- DFS is key infrastructure for hosted services
 - Web hosting
 - Backup
 - Cloud storage
- Enterprise storage is expensive
 - Prudent investment for organizations with large data center infrastructure
Scaling development team

- System is large and complex
 - Easy problems have been solved
 - Hard to delegate
- Recruiting
 - Location
 - Experience
- I'd rather be coding
Support

- Traditional revenue source
 - Enterprise needs someone to lean on when there are problems
 - Value is in developer expertise, not code
- Simple deployments are very stable
 - Object store
 - RBD
 - Single MDS
How is it going?

- **Successes**
 - Feature set
 - Community
 - RBD

- **Failures**
 - QA
 - Performance tuning
 - Hadoop
Future

• Community
 – Cloud computing
 – HPC, exascale
 – Hadoop

• Team
 – QA, developers
 – Support infrastructure
 – Business infrastructure
Thanks